Critical domain interactions for type A RNase P RNA catalysis with and without the specificity domain
نویسندگان
چکیده
The natural trans-acting ribozyme RNase P RNA (RPR) is composed of two domains in which the catalytic (C-) domain mediates cleavage of various substrates. The C-domain alone, after removal of the second specificity (S-) domain, catalyzes this reaction as well, albeit with reduced efficiency. Here we provide experimental evidence indicating that efficient cleavage mediated by the Escherichia coli C-domain (Eco CP RPR) with and without the C5 protein likely depends on an interaction referred to as the "P6-mimic". Moreover, the P18 helix connects the C- and S-domains between its loop and the P8 helix in the S-domain (the P8/ P18-interaction). In contrast to the "P6-mimic", the presence of P18 does not contribute to the catalytic performance by the C-domain lacking the S-domain in cleavage of an all ribo model hairpin loop substrate while deletion or disruption of the P8/ P18-interaction in full-size RPR lowers the catalytic efficiency in cleavage of the same model hairpin loop substrate in keeping with previously reported data using precursor tRNAs. Consistent with that P18 is not required for cleavage mediated by the C-domain we show that the archaeal Pyrococcus furiosus RPR C-domain, which lacks the P18 helix, is catalytically active in trans without the S-domain and any protein. Our data also suggest that the S-domain has a larger impact on catalysis for E. coli RPR compared to P. furiosus RPR. Finally, we provide data indicating that the absence of the S-domain and P18, or the P8/ P18-interaction in full-length RPR influences the charge distribution near the cleavage site in the RPR-substrate complex to a small but reproducible extent.
منابع مشابه
Design and isolation of ribozyme-substrate pairs using RNase P-based ribozymes containing altered substrate binding sites.
Substrate recognition and cleavage by the bacterial RNase P RNA requires two domains, a specificity domain, or S-domain, and a catalytic domain, or C-domain. The S-domain binds the T stem-loop region in a pre-tRNA substrate to confer specificity for tRNA substrates. In this work, the entire S-domain of the Bacillus subtilis RNase P RNA is replaced with an artificial substrate binding module. Ne...
متن کاملA ribonuclease III domain protein functions in group II intron splicing in maize chloroplasts.
Chloroplast genomes in land plants harbor approximately 20 group II introns. Genetic approaches have identified proteins involved in the splicing of many of these introns, but the proteins identified to date cannot account for the large size of intron ribonucleoprotein complexes and are not sufficient to reconstitute splicing in vitro. Here, we describe an additional protein that promotes chlor...
متن کاملModular construction for function of a ribonucleoprotein enzyme: the catalytic domain of Bacillus subtilis RNase P complexed with B. subtilis RNase P protein.
The bacterial RNase P holoenzyme catalyzes the formation of the mature 5'-end of tRNAs and is composed of an RNA and a protein subunit. Among the two folding domains of the RNase P RNA, the catalytic domain (C-domain) contains the active site of this ribozyme. We investigated specific binding of the Bacillus subtilis C-domain with the B.subtilis RNase P protein and examined the catalytic activi...
متن کاملPartial reconstitution of human RNase P in HeLa cells between its RNA subunit with an affinity tag and the intact protein components.
An RNA affinity tag was incorporated into the RNA subunit of human nuclear RNase P. The tagged RNA assembled with the protein components of RNase P inside HeLa cells to generate an active enzyme. Because of the specificity of the RNA tag to streptavidin, the reconstituted complex could be separated from the native enzyme and other ribonucleoproteins (particularly RNase MRP) by streptavidin agar...
متن کاملThermomechanical Interactions Due to Hall Current in Transversely Isotropic Thermoelastic with and Without Energy Dissipation with Two Temperatures and Rotation
The present paper is concerned with the investigation of disturbances in a homogeneous transversely isotropic thermoelastic rotating medium with two temperatures, in the presence of the combined effects of Hall currents and magnetic field due to thermomechanical sources. The formulation is applied to the thermoelasticity theories developed by Green-Naghdi Theories of Type-II and Type-III. ...
متن کامل